Logic in Computer Science DAT060/DIT202/DIT201 (7.5 hec)

Responsible: Thierry Coquand – Telefon: 1030

Monday 4th of January 2021, 14:00–18:00

 $\begin{array}{c} \text{Total: 60 points} \\ \text{CTH:} \geqslant 30\text{: } 3, \geqslant 41\text{: } 4, \geqslant 51\text{: } 5 \\ \end{array} \quad \text{GU:} \geqslant 30\text{: } \text{G}, \geqslant 46\text{: } \text{VG} \end{array}$

Write in English and as readable as possible; make sure the uploaded file is visible/readable (think that what we cannot read we cannot correct).

OBS: All answers should be *carefully* motivated. Points will be deduced when you do not properly justify your answer.

Good luck!

1. (2.5pts) Give a proof in natural deduction of the following sequent:

 $(q \to r) \land (q \lor p) \vdash (p \to q) \to (r \land q)$

1.	$(q \to r) \land (q \lor p)$	premise
2.	$p \to q$	assumption
3.	$q \rightarrow r$	$\wedge e_1 1$
4.	$q \lor p$	$\wedge e_2 1$
5.	q	assumption
6.	r	$\rightarrow e$ (3,5)
7.	$r \wedge q$	$\wedge i$ (6,5)
8.	p	assumption
9.	q	$\rightarrow e(2,8)$
10.	r	$\rightarrow e$ (3,9)
11.	$r \wedge q$	∧i (10,9)
12.	$r \wedge q$	$\vee e (4,5-7,8-11)$
13.	$(p \to q) \to (r \land q)$	\rightarrow i (2–12)

2. (a) (1.5pt) Without using truth tables, give <u>all</u> valuations for which the formula

$$(s \to \neg p \to \neg r) \land ((r \lor q) \land s \land \neg p)$$

is true.

(b) (2.5pts) Explain how you arrived to your solution.

Solution:

- (a) There is only one possible valuation which is when s and q are true, and p and r are false.
- (b) For the formula to be true it should be that both $(s \to \neg p \to \neg r)$ and $((r \lor q) \land s \land \neg p)$ are true.

For $(s \to \neg p \to \neg r)$ to be true then either

- i. s is false,
- ii. or both s and $\neg p \rightarrow \neg r$ are true. This will happen when (iia) s is true and $\neg p$ is false, or when (iib) s, $\neg p$ and $\neg r$ are true. Hence, when (iia) s and p are true, or when (iib) s is true and p and r are false.

For $((r \lor q) \land s \land \neg p)$ to be true then both $r \lor q$, s and $\neg p$ need to be true. This will happen if at least r or q is true, s is true and p is false.

Observe that option i. is no longer possible (since s need to be false there), and neither is sub-option (iia) (since p need to be true there). So we only have the sub-option (iib) where s is true and p and r are false. Since r must be false then q must be true for the whole formula to be true and actually, this is the only possible valuation.

- 3. For each of the sequents below, prove using natural deduction that they are valid, or give a counter-model showing that they are not.
 - (a) (2pts) $\forall x.R(x,x) \vdash \forall x.\forall y.(R(x,y) \rightarrow x = y)$

Solution:

We will give a counter-model and hence by soundness the sequent is not valid. Let the domain \mathcal{A} be a set with at least 2 elements (which we will call a and b) and the interpretation of R be the Cartesian product of the domain of the model with itself, that is $R^{\mathcal{M}} = \mathcal{A} \times \mathcal{A}$. For all $e \in \mathcal{A}$ we have that $(e, e) \in \mathcal{A} \times \mathcal{A}$ so this model satisfies the premise.

Observe that $(a, b) \in \mathcal{A} \times \mathcal{A}$ but $a \neq b$ so $\forall x. \forall y. (R(x, y) \rightarrow x = y)$ doesn't hold in the model.

(b) (2.5pts)
$$Q(a) \land \neg Q(b) \vdash \neg (a = b)$$

1.	$Q(a) \wedge \neg Q(b)$	premise
2.	Q(a)	$\wedge e_1 1$
3.	$\neg Q(b)$	$\wedge e_2 1$
4.	a = b	assumption
5.	Q(b)	=e (4,2) with $\phi(u) \equiv Q(u)$
6.	\perp	$\neg e(3,5)$
7.	$\neg(a=b)$	¬i 4–6

(c) (2pts)
$$\forall x.\forall y.\forall z.(R(x,y) \land R(y,z) \to R(x,z)) \vdash \forall x.\forall y.(x = y \to \neg R(x,y))$$

Solution:

This says that if a relation is transitive, then there is no element in the domain that is related to itself. This we know doesn't have to be so: consider for example the set of Natural numbers with the \leq relation which transitive and reflexive.

(d) (3pts) $\forall x.\forall y.\forall z.(R(x,y) \land R(x,z) \to R(y,z)), \forall x.R(x,x) \vdash \forall x.\forall y.(R(x,y) \to R(y,x))$

1.	$\forall x. \forall y. \forall z. (R(x, y) \land R(x, z) \rightarrow R(y, z))$	premise
2.	$\forall x.R(x,x)$	premisse
3.	x_0	fresh
4.	y_0	fresh
5.	$\forall y.\forall z.(R(x_0,y) \land R(x_0,z) \to R(y,z))$	$\forall e \ 1 \text{ with } x_0$
6.	$\forall z. (R(x_0, y_0) \land R(x_0, z) \to R(y_0, z))$	$\forall e \ 5 \ with \ y_0$
7.	$R(x_0, y_0) \land R(x_0, x_0) \to R(y_0, x_0)$	$\forall e \ 6 \ with \ x_0$
8.	$R(x_0, x_0)$	$\forall e \ 2 \text{ with } x_0$
9.	$R(x_0, y_0)$	assumption
10.	$R(x_0, y_0) \wedge R(x_0, x_0)$	∧i (9,8)
11.	$R(y_0, x_0)$	$\rightarrow e(7,10)$
12.	$R(x_0, y_0) \to R(y_0, x_0)$	→i 9–11
13.	$\forall y. (R(x_0, y) \to R(y, x_0))$	∀i 4–12
14.	$\forall x. \forall y. (R(x,y) \rightarrow R(y,x))$	∀i 3–13

(e) (3.5pts)
$$\forall x. \exists y. R(x, y) \vdash \forall x. \exists y. \exists z. (R(x, y) \land R(y, z))$$

1.	$\forall x. \exists y. R(x, y)$	premise
2.	<i>x</i> ₀	fresh
3.	$\exists y. R(x_0, y)$	$\forall e \ 1 \ with \ x_0$
4.	y_0	fresh
5.	$R(x_0, y_0)$	assumption
6.	$\exists y. R(y_0, y)$	$\forall e \ 1 \ with \ y_0$
7.		fresh
8.	$R(y_0, z_0)$	assumption
9.	$R(x_0, y_0) \wedge R(y_0, z_0)$	∧i (5,8)
10.	$\exists z. (R(x_0, y_0) \land R(y_0, z))$	∃i 9
11.	$\exists y. \exists z. (R(x_0, y) \land R(y, z))$	∃i 10
12.	$\exists y. \exists z. (R(x_0, y) \land R(y, z))$	$\exists e (6, 7-11)$
13.	$\exists y. \exists z. (R(x_0, y) \land R(y, z))$	$\exists e (3, 4-12)$
14.	$\forall x. \exists y. \exists z. (R(x,y) \land R(y,z))$	∀i 2–13

4. Consider the following semantic entailments:

- i) $P(a), Q(b) \models \exists x. (P(x) \land Q(x)) \lor \exists x. \exists y. \neg (x = y)$
- ii) $\forall x. \forall y. (R(x, y) \leftrightarrow R(y, x)) \models \forall x. R(x, x)$
- iii) $\forall x.R(x,x) \models \forall x.\forall y.(R(x,y) \rightarrow \neg \forall z.\neg(R(x,z) \land R(z,y)))$
- (a) (2 pts) What is a model for the language of these entailments?
- (b) (2.5+2.5+3.5 pts) Explain semantically (that is, reasoning with models) whether these entailments are valid or not.

Solution:

(a) A model \mathcal{M} for the language consists of a domain $\mathcal{A} \neq \emptyset$ with an equality relation $=_{\mathcal{A}} \subseteq \mathcal{A} \times \mathcal{A}$, two constants $a^{\mathcal{M}}, b^{\mathcal{M}} \in \mathcal{A}$, two unary relations $P^{\mathcal{M}}, Q^{\mathcal{M}} \subseteq \mathcal{A}$, and a binary relation $R^{\mathcal{M}} \subseteq \mathcal{A} \times \mathcal{A}$.

- (b) i) The semantic entailment is valid.
 - Let \mathcal{M} be a model in which the premises hold. Hence there are constants $a^{\mathcal{M}}, b^{\mathcal{M}} \in \mathcal{A}$ such that $a^{\mathcal{M}} \in P^{\mathcal{M}}$ and $b^{\mathcal{M}} \in Q^{\mathcal{M}}$. We know that either $a^{\mathcal{M}} = b^{\mathcal{M}}$ or $a^{\mathcal{M}} \neq b^{\mathcal{M}}$. If $a^{\mathcal{M}} = b^{\mathcal{M}}$ then we also have that $a^{\mathcal{M}} \in Q^{\mathcal{M}}$ and, hence $\mathcal{M} \models \exists x. (P(x) \land Q(x))$ holds. If $a^{\mathcal{M}} \neq b^{\mathcal{M}}$ then we know there are two elements in the model which are not equal so $\mathcal{M} \models \exists x. \exists y. \neg (x = y)$ holds.
 - ii) The semantic entailment is not valid. Consider the set of Natural numbers with the empty relation as $R^{\mathcal{M}}$. Recall that $R(x, y) \leftrightarrow R(y, x)$ is defined as $(R(x, y) \to R(y, x)) \wedge (R(y, x) \to R(x, y))$. In this model the premise is valid simply because no elements in the domain satisfy the relation $R^{\mathcal{M}}$, hence the two implications above will always hold and therefore also the conjunction.
 - However, there is no $n \in \mathcal{A}$ such that $(n, n) \in \mathbb{R}^{\mathcal{M}}$, hence $\mathcal{M} \not\models \forall x. \mathbb{R}(x, x)$. iii) The semantic entailment is valid.

Let us assume a model \mathcal{M} in which the interpretation $R^{\mathcal{M}}$ of R is reflexive, that is, for all $a \in \mathcal{A}$, $(a, a) \in R^{\mathcal{M}}$. We need to show that $\mathcal{M} \models \forall x. \forall y. (R(x, y) \rightarrow \neg \forall z. \neg (R(x, z) \land R(z, y))).$

Let
$$a, b \in \mathcal{A}$$
 such that $(a, b) \in R^{\mathcal{M}}$. We need to show that
 $\mathcal{M} \models_{[x \mapsto a, y \mapsto b]} \neg \forall z. \neg (R(x, z) \land R(z, y)).$

Observe that whenever z takes the same value as y, in this case b, then we have that $\mathcal{M} \models_{[x \mapsto a, y \mapsto b, z \mapsto b]} R(x, z) \wedge R(z, y)$ since we have that both $(a, b) \in R^{\mathcal{M}}$ by assumption and that $(a, a) \in R^{\mathcal{M}}$ since the model satisfies the premise. Hence $\mathcal{M} \models_{[x \mapsto a, y \mapsto b]} \exists z. (R(x, z) \wedge R(z, y)).$

Note that semantically this is exactly what we want to show since there exists a value that satisfies a property if and only if it is not the case that for all values the property doesn't hold.

- 5. Let F be a monotone function $Pow(S) \to Pow(S)$ where S is a set and Pow(S) the set of all subsets of S. Let A and B be two subsets of S.
 - (a) (3 pts) Is the function $G(X) = A \cup (B \cap F(X))$ monotone? Why?
 - (b) (2 pts) Can the function $H(X) = A \cap (S F(X))$ be monotone? Justify.

- (a) The function G is monotone. If $X \subseteq Y$ then we have $F(X) \subseteq F(Y)$ and so $B \cap F(X) \subseteq B \cap F(Y)$ and $G(X) \subseteq G(Y)$.
- (b) The function H can be monotone if A is empty. It is then the constant empty function.

- 6. We consider the following theory with two axioms $\psi_1 = \forall x P(\mathsf{zero}, S(x))$ and $\psi_2 = \forall x \forall y \ (P(x, y) \to P(S(x), S(y))).$
 - (a) (2 pts) Show that P(S(zero), S(S(zero))) is provable in this theory.
 - (b) (3 pts) Explain why P(zero, zero) is *not* provable in this theory.

- (a) We have P(zero, S(zero)) by ψ_1 and $P(\text{zero}, S(\text{zero})) \rightarrow P(S(\text{zero}), S(S(\text{zero})))$ by ψ_2 . Hence P(S(zero), S(S(zero))) by modus ponens (\rightarrow e).
- (b) We have a particular model of universe **N** and zero interpreted by 0 and S by $n \mapsto n+1$ and P(x,y) means x < y. This is a model of ψ_1 and ψ_2 and in this model P(zero, zero) is not valid. By soundness, P(zero, zero) is not provable.
- 7. Are the following LTL formulae valid?
 - (a) (3pts) $(GF(p) \land G(p \to q)) \to FG(q)$
 - (b) (3pts) $(G(p \lor G(q)) \land G(q \lor G(p))) \to G(p) \lor G(q)$

- (a) The first formula is not valid. We can have p and q valid at time $0, 2, 4, \ldots$ and false at time $1, 3, 5, \ldots$. Then GF(p) and $G(p \to q)$ are both valid, but FG(q) is not.
- (b) The second formula is valid. If we have $\neg p$ at time n and $\neg q$ at time m then $p \lor G(q)$ is not valid at time n if $n \leqslant m$ and $q \lor G(p)$ is not valid at time m if $m \leqslant n$.
- 8. Are the following CTL formulae valid?
 - (a) (3 pts) $(AG(p) \land AF(q)) \rightarrow AF(p \land q)$
 - (b) (3 pts) $(EG(p \to AG(p)) \land AF(p)) \to EF(AG(p))$
 - (c) (3 pts) $(EG(p \to AG(p)) \land EF(p)) \to EF(AG(p))$

- (a) The first formula is valid. We follow the path which reach a state where q holds and p holds as well since AG(p) holds.
- (b) The second formula is valid. We follow the path where we have globally $p \to AG(p)$. Since AF(p) holds, we have eventually p. At this point, we have AG(p).
- (c) The third formula is not valid. We take a model with 4 states s_0, s_1, s_2, s_3 and $s_0 \to s_1 \to s_3 \to s_3$ and $s_0 \to s_2 \to s_2$. We take p valid only for s_1 . We then have $EG(p \to AG(p))$ on the path $s_0 \to s_2 \to s_2$ and EF(p) but EF(AG(p)) does not hold at s_0 .
- 9. (a) (2 pts) Give a formula which holds in a model if, and only if, the universe/domain of this model has at most 2 elements.
 - (b) (3 pts) Explain why there is no formula such that this formula holds in a model if, and only if, the universe/domain of this model is finite.

Solution:

- (a) We take $\forall x \ y \ z \ (x = y \lor y = z \lor z = x)$. The negation of this formula expresses that the universe has more than 2 elements.
- (b) We can similarly write a formula ψ_n expressing that the universe has more than n elements.

Assume that there is such a formula δ which holds if, and only if, the model is finite. The theory with formulae $\delta, \psi_0, \psi_1, \ldots$ is then consistent since any finite subtheory is consistent. By compactness it has a model. This model should be finite since it is a model of δ but for any n, it has more than n elements since it is a model of ψ_n . This is a contradiction which shows that there cannot be such a formula δ .