Logic in Computer Science DAT060/DIT202/DIT201 (7.5 hec)

Responsible: Ana Bove – Telefon: 1020

Monday 3rd of January 2021, 14:00–18:00

 $\begin{array}{c} \text{Total: 60 points} \\ \text{CTH:} \geqslant 30\text{: } 3, \geqslant 41\text{: } 4, \geqslant 51\text{: } 5 \\ \end{array} \quad \text{GU:} \geqslant 30\text{: } \text{G}, \geqslant 46\text{: } \text{VG} \end{array}$

No help material but dictionaries to/from English.

Write in English and as readable as possible (think that what we cannot read we cannot correct).

OBS: All answers should be *carefully* motivated. <u>Points will be deduced</u> when you give an unnecessarily complicated solution or when you do not properly justify your answer.

```
Good luck!
```

1. (2x3pts) Give proofs in natural deduction of the following sequents:

(a)
$$p \to (q \lor r) \vdash \neg q \to (p \to r)$$

Solution:

1.	$p \to (q \lor r)$	premise
2.	$\neg q$	assumption
3.	p	assumption
4.	$q \lor r$	$\rightarrow e (1,3)$
5.	q	assumption
6.		$\rightarrow e(2,5)$
7.	r	$\perp e 6$
8.	r	assumption
9.	r	$\vee e (4,5-7,8-8)$
10.	$p \rightarrow r$	→i (3–9)
11.	$\neg q \rightarrow (p \rightarrow r)$	\rightarrow i (2–10)

(b) $\vdash \neg (p \leftrightarrow \neg p)$

Solution:

Recall this is the same as $\vdash \neg (p \rightarrow \neg p \land \neg p \rightarrow p)$

1.	$p \to \neg p \land \neg p \to p$	assumption
2.	$p \rightarrow \neg p$	$\wedge e_1 1$
3.	$\neg p \rightarrow p$	$\wedge e_2 1$
4.	$p \vee \neg p$	LEM
5.	p	assumption
6.	$ \neg p$	$\rightarrow e(2,5)$
7.		$\rightarrow e(6,5)$
8.	$\neg p$	assumption
9.	p	$\rightarrow e$ (3,8)
10.		$\rightarrow e$ (8,9)
11.		$\vee e (4,5-7,8-10)$
12.	$\neg(p\leftrightarrow\neg p)$	\rightarrow i 1–11

2. (a) (1pts) Without using truth tables, give a valuation where p and s have the same value but where NOT ALL the propositional atoms have the same value, for which the following formula is true:

$$(p \leftrightarrow r \land s) \land (q \lor s \to r) \land (p \lor q \to s)$$

(b) (2.5pts) Explain the reasoning and your answer both in the case where p and s are true and in the case they are false.

Solution:

(a) p, s and q false and r true, or p, s and r true, and q false.

(b) For the formula to be true all parts of the conjunction need to be true. For (p ↔ r ∧ s) to be true then p and r ∧ s need to have the same value. If p and s are false, then r ∧ s is false independent of r. Now, for the formula (p ∨ q → s) to be true then q needs to be false as well. Since q and s are false then (q ∨ s → r) is true independent of r so we could set r to true. If p is true then r ∧ s needs to be true and hence both r and s need to be true. Fortunately, with these 3 proposiontal atoms true, no matter the value of q, the

formulas $q \lor s \to r$ and $p \lor q \to s$ become true so we can set q false.

- 3. (3x3pts) For each of the sequents below, prove using natural deduction that they are valid, or give a counter-model showing that they are not.
 - (a) $\forall x. \forall y. R(x, y) \vdash \forall x. \forall y. (R(x, y) \land R(y, x))$

Solution:

1.	$\forall x. \forall y. R(x, y)$	premise
2.	x_0	fresh
3.	y_0	fresh
4.	$\forall y.R(x_0,y)$	$\forall e \ 1 \text{ with } x_0$
5.	$R(x_0, y_0)$	$\forall e \ 4 \ with \ y_0$
6.	$\forall y.R(y_0,y)$	$\forall e \ 1 \ with \ y_0$
7.	$R(y_0, x_0)$	$\forall e \ 6 \ with \ x_0$
8.	$R(x_0, y_0) \land R(y_0, x_0)$	$\wedge i$ (5,7)
9.	$\forall y. (R(x_0, y) \land R(y, x_0))$	∀i (3–8)
10.	$\forall x. \forall y. (R(x,y) \land R(y,x))$	∀i (2–9)

(b)
$$\forall x. \neg \forall y. R(x, y) \vdash \neg \forall x. \forall y. \neg R(x, y)$$

Solution:

We will give a counter-model.

Consider $\mathcal{A} = \mathbb{N}$ and $R^{\mathcal{M}} \equiv \emptyset$. In this model the formula $\forall x. \neg \forall y. R(x, y)$ is valid since it is indeed the case that for any $n \in \mathbb{N}$, not for all $m \in \mathbb{N}$ we have $(n,m) \in R^{\mathcal{M}}$ simply because $R^{\mathcal{M}} \equiv \emptyset$. The formula $\neg \forall x. \forall y. \neg R(x, y)$ estates that it is not the case that for all $n, m \in \mathbb{N}$, $(n,m) \notin R^{\mathcal{M}}$. This means that there must be at least a pair $(n,m) \in R^{\mathcal{M}}$. But since $R^{\mathcal{M}}$ is empty there are actually no $n, m \in \mathbb{N}$ such $(n,m) \in R^{\mathcal{M}}$. Observe that in any model where $R^{\mathcal{M}}$ is not empty, the formula $\neg \forall x. \forall y. \neg R(x, y)$ holds since it is logically equivalent to the formula $\exists x. \exists y. R(x, y)$.

(c)
$$\forall x. \forall y. \forall z. (x = z \rightarrow y = z \rightarrow x = y)$$

Solution:

1.	x_0	fresh
2.	y_0	fresh
3.		fresh
4.	$x_0 = z_0$	assumption
5.	$y_0 = z_0$	assumption
6.	$ y_0 = y_0$	=i
7.	$ z_0 = y_0$	=e (5,6) with $\phi \equiv u = y_0$
8.		=e (7,4) with $\phi \equiv x_0 = u$
9.	$y_0 = z_0 \to x_0 = y_0$	→i (5–8)
10.	$x_0 = z_0 \rightarrow y_0 = z_0 \rightarrow x_0 = y_0$	→i (4–9)
11.	$\forall z. (x_0 = z \to y_0 = z \to x_0 = y_0)$	∀i (3–10)
12.	$\forall y. \forall z. (x_0 = z \to y = z \to x_0 = y)$	∀i (2–11)
13.	$\forall x. \forall y. \forall z. (x = z \rightarrow y = z \rightarrow x = y)$	$\forall i (1-12)$

4. (2x3.5pts) Some people claim that the sentence "nobody trusts a politician" can be formalised as $\forall x.\forall y.(P(x) \rightarrow \neg T(y, x))$ while others say it can be formalised as $\neg(\exists x.\exists y.(P(x) \land T(y, x)))$. Show that actually both formalisations are (provably) equivalent by giving a natural deducation proof of

$$\forall x.\forall y.(P(x) \to \neg T(y, x)) \dashv \vdash \neg (\exists x.\exists y.(P(x) \land T(y, x)))$$

Solution:

1.	$\forall x. \forall y. (P(x) \rightarrow \neg T(y, x))$	premise
2.	$\exists x. \exists y. (P(x) \land T(y, x))$	assumption
3.		fresh
4.	$\exists y.(P(x_0) \land T(y, x_0))$	assumption
5.	<i>y</i> ₀	fresh
6.	$P(x_0) \wedge T(y_0, x_0))$	assumption
7.	$P(x_0)$	$\wedge e_1 6$
8.	$T(y_0, x_0)$	$\wedge e_2 6$
9.	$\forall y.(P(x_0) \to \neg T(y, x_0))$	$\forall e \ 1 \text{ with } x_0$
10.	$P(x_0) \to \neg T(y_0, x_0)$	$\forall e \ 9 \text{ with } y_0$
11.	$\neg T(y_0, x_0)$	$\rightarrow e(10,7)$
12.		¬e (11,8)
13.	⊥	$\exists e (4,5-12)$
14.	\perp	$\exists e (2,3-13)$
15.	$\neg(\exists x.\exists y.(P(x) \land T(y,x)))$	¬i (2–14)

1.	$\neg(\exists x.\exists y.(P(x) \land T(y,x)))$	premise
2.	x_0	fresh
3.	y_0	fresh
4.	$P(x_0)$	assumption
5.	$T(y_0, x_0)$	assumption
6.	$P(x_0) \wedge T(y_0, x_0)$	$\wedge i$ (4,5)
7.	$ \left \begin{array}{c} \exists y. P(x_0) \land T(y, x_0) \\ \end{array} \right $	∃i 6
8.	$ \left \begin{array}{c} \exists x. \exists y. P(x) \land T(y, x) \end{array} \right $	∃i 7
9.		⊐е
10.	$\neg T(y_0, x_0)$	¬i (5−9)
11.	$P(x_0) \to \neg T(y_0, x_0)$	\rightarrow i (4–10)
12.	$\forall y.(P(x_0) \to \neg T(y, x_0))$	∀i (3–11)
13.	$\forall x. \forall y. (P(x) \to \neg T(y, x))$	∀i (2–12)

5. Consider the following semantic entailments

(i)
$$\exists x. \forall y. P(x, y) \models \forall y. \exists x. P(x, y)$$

(ii) $\forall y. \exists x. P(x, y) \models \exists x. \forall y. P(x, y)$

(a) (1pt) What is a model for the language?

Solution:

A model \mathcal{M} for the language consists in a domain $\mathcal{A} \neq \emptyset$, and a binary relation $P^{\mathcal{M}} \subseteq \mathcal{A} \times \mathcal{A}$.

(b) (2x3.5pts) Explain semantically (that is, reasoning with models) whether these entailments hold or not.

Solution:

(i) This entailment is valid.

Consider a model \mathcal{M} such that $\mathcal{M} \models \exists x. \forall y. P(x, y)$. This tells us that for a certain $a \in \mathcal{A}, (a, b) \in P^{\mathcal{M}}$ for any $b \in \mathcal{A}$.

We need to show that $\mathcal{M} \models \forall y. \exists x. P(x, y)$. That is, $\mathcal{M} \models_{[y \mapsto b]} \exists x. P(x, y)$ for any $b \in \mathcal{A}$.

For this to hold, for any $b \in \mathcal{A}$ we need to find a $c \in \mathcal{A}$ such that $(c, b) \in P^{\mathcal{M}}$. But we already know that $(a, b) \in P^{\mathcal{M}}$ for any $b \in \mathcal{A}$, so our c = a for any b.

(ii) This entailent is not valid.

Consider $\mathcal{A} = \mathbb{N}$ and $P^{\mathcal{M}} = \{(n, m) \in \mathbb{N}^2 \mid n = m^2\}$. $\forall y. \exists x. P(x, y)$ is valid in this model since for any Natural number m, m^2 is also a Natural number. On the other hand, $\exists x. \forall y. P(x, y)$ is not valid since it would mean that there is a Natural number n which is equal to the square of any Natural number m, which we know cannot be the case.

6. (3.5pts) We fix a language with a relation symbol R. Give a model which validates all the following formulae:

$$\begin{aligned} &\forall x \ \neg R(x,x) & \forall x \forall y \forall z \ (R(x,y) \land R(y,z) \to R(x,z)) \\ &\forall x \ \exists y \ R(x,y) & \forall x \forall y \ (R(x,y) \to \exists z \exists t \ (R(x,z) \land R(z,t) \land R(t,y))) \end{aligned}$$

Solution:

A model is given by the set of rational numbers with the < relation.

- 7. (2x3.5pts) Explain whether the following LTL formulae are valid or not:
 - (a) $(FG(p) \land FG(q)) \rightarrow FG(p \land q)$

(b) $G(p \to Xp) \to (Gp \lor G(\neg p))$

Solution:

(a) The formula is valid.

If we have FG(p) on a given path π , then then exists m such that $\pi, l \models p$ if $l \ge m$. If we also have FG(q) then we have n such that $\pi, l \models q$ if $l \ge n$. Then we have $\pi, l \models p \land q$ for $l \ge N$ with N = max(m, n).

- (b) The formula is *not* valid. Consider the path π where p is false at $\pi(0)$ and true at all $\pi(n)$ for n > 0. Then we have $\pi \models G(p \rightarrow Xp)$ but we don't have $\pi \models Gp$ and we don't have $\pi \models G(\neg p)$.
- 8. (a) (2pts) What is a model of CTL (Computation Tree Logic)?
 - (b) (3+3.5 pts) Explain whether the following CTL formulae are valid or not:
 - (i) $EF(p \lor q) \to (EF(p) \lor EF(q))$
 - (ii) $AF(p \lor q) \to AF(p) \lor AF(q)$

Solution:

- (a) A model is given by a transition system S, \rightarrow with no deadlock $N(s) = \{s' \mid s \rightarrow s'\} \neq \emptyset$ for s in S, and a labelling function $L(s) \subseteq P$, where P is the set of atoms.
- (b) (i) The formula is valid.

If we have $s \models EF(p \lor q)$ we have a path $s = s_0 \to s_1 \dots$ starting from s with $s_n \models p \lor q$ for some n. We then have $s_n \models p$ or $s_n \models q$ and hence $s \models EF(p)$ or $s \models EF(q)$.

- (ii) The formula is *not* valid. Consider the model with 3 states s_0, s_1, s_2 and transitions $s_0 \to s_1, s_1 \to s_1, s_0 \to s_2, s_2 \to s_2$ and $L(s_0) = \emptyset, L(s_1) = p, L(s_2) = q$. We have $s_0 \models AF(p \lor q)$ but AF(p) is not valid at s_0 and AF(q) is not valid at s_0 .
- 9. We consider a language with a predicate symbol P(x), a unary function symbol s and a constant a. We define the term t(n) by t(0) = a and t(n + 1) = s(t(n)). So, $t(1) = s(a), t(2) = s(s(a)), \ldots$ Consider the formulae

$$\psi_1 = P(s(a))$$
 $\psi_2 = \forall x \ (P(x) \to P(s(x)))$

- (a) (1pt) For which n (or n's) do we have $\psi_1, \psi_2 \vdash P(t(n))$?
- (b) (3.5pts) Explain your answer.

Solution:

This is the case exactly when n > 0. By induction, we show that if n > 0 then $\psi_1, \psi_2 \vdash P(t(n))$. Conversely, we can consider the model M, where the universe A is the set of natural numbers, and P^M is the set of numbers > 0. By *soundness*, if we have $\psi_1, \psi_2 \vdash P(t(n))$, we should have $t(n)^M > 0$ and hence $n = t(n)^M > 0$.

10. (3pts) Let Pow(A) be the set of subsets of a given finite set A and $F : Pow(A) \to Pow(A)$ be a function such that $F(Y) \subseteq F(X)$ whenever $X \subseteq Y$ (for instance F(X) can be A - X). Explain why there exists a subset Z of A such that F(F(Z)) = Z.

Solution:

We have that $Z \mapsto F(F(Z))$ is monotone. Hence it has a fixpoint.