Logic in Computer Science DAT060/DIT202/DIT201 (7.5 hec)

Responsible: Thierry Coquand – Telefon: 1030

Tuesday 27th of October 2020, 14:00–18:00

Total: 60 points CTH: ≥ 30 : $3, \geq 41$: $4, \geq 51$: 5 GU: ≥ 30 : G, ≥ 46 : VG

Write in English and as readable as possible; make sure the uploaded file is visible/readable (think that what we cannot read we cannot correct).

OBS: All answers should be *carefully* motivated. Points will be deduced when you do not properly justify your answer.

Good luck!

1. (2pts) Give proofs in natural deduction of the following sequent:

$$
r \to (p \lor q), \neg(r \land q) \vdash r \to p
$$

Solution:

2. (a) (1pt) Without using truth tables, give a valuation for which the formula

$$
(s \lor q \to p \land r) \lor (p \to q \land r)
$$

is not true.

(b) (2pts) Explain how you arrived to this valuation.

Solution:

- (a) At least one of s and q should be true, p should be true and r should be false.
- (b) For the formula to be false it should be that both $(s \lor q \to p \land r)$ and $(p \to q \land r)$ are false.

For $(s \vee q \rightarrow p \wedge r)$ to be false then $s \vee q$ should be true and $p \wedge r$ should be false. This gives us that at least one of s and q should be true $(*)$, and at least one of p and r should be false $(**)$.

For $(p \to q \land r)$ to be false then p should be true and $q \land r$ should be false, which give us that at least one of q and r should be false.

Since p is true then r should be false because of $(**)$.

There are no more constrains so it is enough that at least one of s and q should be true because of $(*)$ for the formula to be false.

- 3. For each of the sequents below, prove using natural deduction that they are valid, or give a counter-model showing that they are not.
	- (a) (2.5pts) $P(b) \wedge Q(b), \forall x. (P(x) \rightarrow x = a) \vdash Q(a)$

Solution:

(b) $(2.5pts) \forall x. \forall y. (P(x,y) \rightarrow Q(x,y)), \forall x. Q(x,x) \vdash \forall x. P(x,x)$

Solution:

We will give a counter-model \mathcal{M} . In M, let $A = \mathbb{N}$, $P^{\mathcal{M}} \subset \mathbb{N} \times \mathbb{N}$ be such that $x^2 = y$ in \mathbb{N} and $Q^{\mathcal{M}} \subset \mathbb{N} \times \mathbb{N}$ be such that $x \leq y$. Here, for any $a, b \in \mathbb{N}$ we have that whenever $a^2 = b$ then $a \leq b$. Also, we know that $a \leq a$ for all $a \in \mathbb{N}$.

Hence both premises are valid in this model. On the other hand it is not the case that $a^2 = a$ for all $a \in \mathbb{N}$.

(c) (3pts)
$$
\forall x.(\forall y. P(x, y) \lor \forall y. Q(x, y)) \vdash \forall x. \exists y. (P(x, y) \lor Q(x, y))
$$

Solution:

(d) (3pts) $\forall x.\exists y.(P(x,y) \rightarrow R(x,y)), \exists x.\forall y.(P(x,y) \rightarrow R(x,y)) \vdash \forall x.\forall y.(P(x,y) \land R(x,y))$

Solution:

We will give a counter-model \mathcal{M} . In M, let $A = \{1, 2\}$, $P^{\mathcal{M}} = R^{\mathcal{M}} = \{(1, 1), (1, 2), (2, 2)\}.$ We have that $\mathcal{M} \models \forall x . \exists y . (P(x, y) \rightarrow R(x, y))$ and $\mathcal{M} \models \exists x. \forall y. (P(x, y) \rightarrow R(x, y))$ hold. However, $\mathcal{M} \not\models \forall x.\forall y.(P(x,y) \land R(x,y))$ since $(2,1) \notin P^{\mathcal{M}} = R^{\mathcal{M}}$.

(e) $(3pts) \exists x.(P(x) \land Q(x)), \neg \exists x.(Q(x) \land R(x)) \vdash \exists x.(P(x) \land \neg R(x))$

Solution:

- 4. Consider the following semantic entailments:
	- i) $\exists x.\forall y.x = y \models \forall x.\forall y.x = y$
	- ii) $\forall x.(P(x) \rightarrow \exists x.R(x)) \models \exists x.(P(x) \rightarrow R(x))$
	- iii) $\exists x.(P(x) \rightarrow R(x)), \exists x.(R(x) \rightarrow P(x)) \models \exists x.(P(x) \land R(x))$
	- (a) (1.5 pts) What is a model for the language of these entailments?
	- (b) $(2.5+3.5+2.5)$ pts) Explain semantically (that is, reasoning with models) whether these entailments are valid or not.

Solution:

- (a) A model M for the language consists of a domain $A \neq \emptyset$ with an equality relation $=_{\mathcal{A}} \subseteq \mathcal{A} \times \mathcal{A}$, and two unary relations $R^{\mathcal{M}}, P^{\mathcal{M}} \subseteq \mathcal{A}$.
- (b) i) The semantic entailment is valid. Consider a model M with domain A such that $\mathcal{M} \models \exists x. \forall y. x = y.$ We need to show that $\mathcal{M} \models \forall x. \forall y. x = y.$ In this model, there is $a \in \mathcal{A}$ such that for all $b \in \mathcal{A}$, $a =_{\mathcal{A}} b$. That is, all elements in the set are equal to the element a. So any two elements in the set A are equal, hence $\mathcal{M} \models \forall x. \forall y. x = y.$

ii) The semantic entailment is valid.

Consider a model M with domain A such that $\mathcal{M} \models \forall x.(P(x) \rightarrow \exists x.R(x)).$ We need to show that $\mathcal{M} \models \exists x . (P(x) \rightarrow R(x)).$ If there is an $a \in \mathcal{A}$ such that $a \notin P^{\mathcal{M}}$ then $\mathcal{M} \models_{[x \mapsto a]} P(x) \to R(x)$ (since $\mathcal{M} \not\models_{[x \mapsto a]} P(x)$ and hence $\mathcal{M} \models \exists x.(P(x) \rightarrow R(x)).$ Otherwise, $P^{\mathcal{M}} = \mathcal{A} \neq \emptyset$ and $R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$. Observe that in this case $R^{\mathcal{M}} \neq \emptyset$: since we have that $\mathcal{M} \models_{x \mapsto a} P(x) \rightarrow \exists x. R(x)$ for all $a \in \mathcal{A}$ and $\mathcal{M} \models_{[x\mapsto a]} P(x)$ for all $a \in \mathcal{A}$, so it should be that $\mathcal{M} \models \exists x. R(x)$. This means there is $b \in \mathcal{A}$ such that $\mathcal{M} \models_{[x \mapsto b]} R(x)$. Since $P^{\mathcal{M}} = \mathcal{A}$ then $\mathcal{M} \models_{[x \mapsto b]} P(x)$ and hence $\mathcal{M} \models \exists x.(P(x) \rightarrow R(x)).$

- iii) The semantic entailment is not valid. Consider a model M with domain A such $P^{\mathcal{M}} = R^{\mathcal{M}} = \emptyset$. Here both premises are valid simply because there is no element satisfying the condition of the implication. That is, there no $a \in \mathcal{A}$ such that $a \in P^{\mathcal{M}}$ and $a \in R^{\mathcal{M}}$. Hence the conclusion is not valid.
- 5. Consider a language with relation symbols $A(x, y, z)$, $M(x, y, z)$, a constant zero and a function symbol $s(x)$.

Let T be the following theory

- $\forall x \; A(x, \text{zero}, x)$
- $\forall x \forall y \forall z A(x, y, z) \rightarrow A(x, s(y), s(z))$

Let $s^2(x)$ denote $s(s(x))$, $s^3(x)$ denote $s(s(s(x)))$ and so on.

- (a) (3 pts) Show that for all Natural numbers p, q, r , we have $A(s^p(\text{zero}), s^q(\text{zero}), s^r(\text{zero}))$ provable in T if, and only if, r is equal to the addition of p and q .
- (b) (3 pts) Is the theory T, $A(s(\text{zero}), s(\text{zero}), \text{zero})$ inconsistent?

Solution:

(a) If $r = p+q$ then we can use the axioms of T to prove $A(s^p(\text{zero}), s^q(\text{zero}), s^r(\text{zero}))$ by induction on q.

Conversely, we have a model of T by taking for domain the set of natural numbers and s^M the successor function and zero^M to be 0 and $A(x, y, z)$ to mean $z = x + y$. It follows by *soundness* that if $A(s^p(\text{zero}), s^q(\text{zero}), s^r(\text{zero}))$ is provable in T then r is equal to the addition of p and q .

(b) Another model is obtained by taking for domain the set $\{0\}$ and zero^M = 0 and $s^M(x) = 0$ and $A(x, y, z)$ always true. This is a model of the theory

T, $A(s(\text{zero}), s(\text{zero}), \text{zero})$ and hence, using soundness again, this theory is not inconsistent.

6. Are the following LTL formulae valid?

- (a) (2 pts) $G(p \to Xp) \to (Gp \lor G(\neg p))$
- (b) (3 pts) $(G(Fp) \wedge G(p \rightarrow Fa)) \rightarrow GFq$
- (c) (3 pts) $G(Fp \to p) \to (Gp \lor F(G\neg p))$
- (d) $(2 \text{ pts}) G(b \rightarrow (b U (a \land \neg b))) \rightarrow (G(\neg b) \lor F(a \land \neg b))$

Solution:

- (a) The first formula is not valid. We take a path π with $L(\pi(0), p) = 0$ and $L(\pi(n), p) = 1$ for $n > 0$. We then have $\pi \models G(p \rightarrow Xp)$ and π does not validate Gp and π does not validate $G(\neg p)$.
- (b) The second formula is valid: if for a path π we have $L(\pi(k), p) = 1$ infinitely often and whenever p holds q holds later eventually, then q also holds infinitely often.
- (c) The third formula is valid. If we have for a path π that p holds whenever p holds later eventually and we have $\pi \models F(\neg p)$ then $\neg p$ holds eventually, and from this point on, we have $\neg p$ always, so $\pi \models FG(\neg p)$.
- (d) The last formula $G(b \to (b U (a \land \neg b))) \to (G(\neg b) \lor F(b \land a))$ also holds. If for a path π we have $\pi \models Fb$ and $\pi \models G(b \rightarrow (b U a \land \neg b))$ then we have $L(\pi(k), b) = 1$ for some k and $\pi^k \models b \rightarrow (b U a \land \neg b)$ and hence $\pi^k \models b U (a \land \neg b)$ and so we have eventually $a \wedge \neg b$ as desired.
- 7. Are the following CTL formulae valid?
	- (a) (3 pts) $AF(EGp) \rightarrow EGp$
	- (b) (3 pts) $(AG(AXp \rightarrow p) \land \neg p) \rightarrow EG(\neg p)$
	- (c) (2 pts) $EF(AGp) \rightarrow EGp$
	- (d) (2 pts) $AG(p \rightarrow E(p U q)) \rightarrow (AG(\neg p) \vee EFq)$

Solution:

- (a) The first formula is not valid: a counter model is given by $S_0 \to S_1$ and $S_1 \to S_1$ and p holds for S_1 . We then have $S_0 \models AF(EGp)$ by not $S_0 \models EGp$.
- (b) The second formula is valid. For any model, is we have $s \models \neg p$ and $s \models AXp \rightarrow$ p then we have $s \to s_1$ such that $s_1 \models \neg p$. We also have $s_1 \models AXp \to p$ since $s \models AG(AXp \rightarrow p)$ and so we can find $s_1 \rightarrow s_2$ such that $s_2 \models \neg p$ and so on. We build in this way a path $s \to s_1 \to s_2 \to \ldots$ where we have $s_n \models \neg p$ for all *n* and so $s \models EG(\neg p)$.
- (c) The third formula $EF(AGp) \rightarrow EGp$ is not valid. A counter model is given by $S_0 \to S_1$ and $S_1 \to S_1$ and p only valid at S_1 .
- (d) The last formula $AG(p \to E(p U q)) \to (AG(\neg p) \lor EFq)$ is valid. If we have $s \models AG(p \rightarrow E(p U q))$ and $s \models \neg AG(\neg p) = E F p$ then we have a finite path from s to a state s' satisfying p. We then have $s' \models p \rightarrow E(p|U|q)$ and so $s' \models E(p|U|q)$ and we have a finite path from s' to a state satisfying q. So we have $s \models EFq$ as desired.
- 8. Consider a language with constant zero and function symbol $s(x)$ and the following theory

$$
\forall x \ (\text{zero} \neq s(x)) \qquad \forall x \forall y \ (s(x) = s(y) \rightarrow x = y)
$$

Let $s^2(x)$ denote $s(s(x))$, $s^3(x)$ denote $s(s(s(x)))$ and so on.

- (a) (3 pts) Show that for any Natural numbers p and q we have that if $p \neq q$ then $T \vdash s^p(\textsf{zero}) \neq s^q(\textsf{zero})$
- (b) (2 pts) Can T have a finite model?

Solution:

(a) Clearly we have by the first axiom $T \vdash$ zero $\neq s^q$ (zero) if $q \neq 0$. Also, $T \vdash$ s^p (zero) \neq zero if $p \neq 0$ by the first axiom and symmetry of equality. Finally by the second axiom we have

$$
T \vdash s^{p+1}(\textsf{zero}) = s^{q+1}(\textsf{zero}) \to s^p(\textsf{zero}) = s^q(\textsf{zero})
$$

and so we have by induction $T \vdash s^{p+1}(\textsf{zero}) \neq s^{q+1}(\textsf{zero})$ if $p \neq q$.

(b) It follows that, in any model of T, the interpretations of zero, s (zero), s^2 (zero), ... are all distinct and so T does not have any finite model.