Logic in Computer Science DAT060/DIT202/DIT201 (7.5 hec)

Responsible: Thierry Coquand – Telefon: 1030

Tuesday 27th of October 2020, 14:00-18:00

Total: 60 points CTH: ≥ 30 : 3, ≥ 41 : 4, ≥ 51 : 5 GU: ≥ 30 : G, ≥ 46 : VG

Write in English and as readable as possible; make sure the uploaded file is visible/readable (think that what we cannot read we cannot correct).

OBS: All answers should be *carefully* motivated. Points will be deduced when you do not properly justify your answer.

Good luck!

1. (2pts) Give proofs in natural deduction of the following sequent:

$$r \to (p \lor q), \neg (r \land q) \vdash r \to p$$

Solution:

1.	$r \to (p \lor q)$	premise
2.	$\neg(r \land q)$	premise
3.	r	assumption
4.	$p \lor q$	$\rightarrow e (1,3)$
5.	p	assumption
6.	q	assumption
7.	$r \wedge q$	∧i (3,6)
8.		¬e (2,7)
9.	p	⊥e
10.	p	$\vee e (4,5-5,6-9)$
11.	$r \rightarrow p$	\rightarrow i 3–10

2. (a) (1pt) Without using truth tables, give a valuation for which the formula

$$(s \lor q \to p \land r) \lor (p \to q \land r)$$

is not true.

(b) (2pts) Explain how you arrived to this valuation.

Solution:

- (a) At least one of s and q should be true, p should be true and r should be false.
- (b) For the formula to be false it should be that both $(s \lor q \to p \land r)$ and $(p \to q \land r)$ are false.

For $(s \lor q \to p \land r)$ to be false then $s \lor q$ should be true and $p \land r$ should be false. This gives us that at least one of s and q should be true (*), and at least one of p and r should be false (**).

For $(p \to q \land r)$ to be false then p should be true and $q \land r$ should be false, which give us that at least one of q and r should be false.

Since p is true then r should be false because of (**).

There are no more constrains so it is enough that at least one of s and q should be true because of (*) for the formula to be false.

3. For each of the sequents below, prove using natural deduction that they are valid, or give a counter-model showing that they are not.

(a) (2.5pts)
$$P(b) \land Q(b), \forall x. (P(x) \to x = a) \vdash Q(a)$$

Solution:

1.	$P(b) \wedge Q(b)$	premise
2.	$\forall x. (P(x) \to x = a)$	premise
3.	$P(b) \to b = a$	$\forall e b$
4.	P(b)	$\wedge e_1 1$
5.	b = a	$\rightarrow e(3,4)$
6.	Q(b)	$\wedge e_1 1$
7.	Q(a)	=e with 5, $\phi(u) \equiv Q(u)$

(b) (2.5pts) $\forall x.\forall y.(P(x,y) \rightarrow Q(x,y)), \forall x.Q(x,x) \vdash \forall x.P(x,x)$

Solution:

We will give a counter-model \mathcal{M} . In \mathcal{M} , let $A = \mathbb{N}$, $P^{\mathcal{M}} \subset \mathbb{N} \times \mathbb{N}$ be such that $x^2 = y$ in \mathbb{N} and $Q^{\mathcal{M}} \subset \mathbb{N} \times \mathbb{N}$ be such that $x \leq y$. Here, for any $a, b \in \mathbb{N}$ we have that whenever $a^2 = b$ then $a \leq b$. Also, we know that $a \leq a$ for all $a \in \mathbb{N}$. Hence both premises are valid in this model. On the other hand it is not the case that $a^2 = a$ for all $a \in \mathbb{N}$.

(c) (3pts)
$$\forall x.(\forall y.P(x,y) \lor \forall y.Q(x,y)) \vdash \forall x.\exists y.(P(x,y) \lor Q(x,y))$$

Solution:

1.	$\forall x.(\forall y.P(x,y) \lor \forall y.Q(x,y))$	premise
2.	<i>x</i> ₀	fresh
3.	$\forall y. P(x_0, y) \lor \forall y. Q(x_0, y)$	$\forall e \ 1 \text{ with } x_0$
4.	$\forall y. P(x_0, y)$	assumption
5.	y_0	fresh
6.	$P(x_0, y_0)$	$\forall e \ 3 \text{ with } y_0$
7.	$P(x_0, y_0) \lor Q(x_0, y_0)$	$\vee i_1 6$
8.	$\exists y. (P(x_0, y) \lor Q(x_0, y))$	∃i 7
9.	$\forall y.Q(x_0,y)$	assumption
10.	y_0	fresh
11.	$Q(x_0, y_0)$	$\forall e \ 3 \text{ with } y_0$
12.	$P(x_0, y_0) \lor Q(x_0, y_0)$	$\vee i_2 11$
13.	$\exists y.(P(x_0,y) \lor Q(x_0,y))$	∃i 12
14.	$\exists y.(P(x_0,y) \lor Q(x_0,y))$	$\vee e (3,4-8,9-13)$
15.	$\forall x. \exists y. (P(x,y) \lor Q(x,y))$	$\forall i 2-14$

(d) (3pts) $\forall x. \exists y. (P(x, y) \to R(x, y)), \exists x. \forall y. (P(x, y) \to R(x, y)) \vdash \forall x. \forall y. (P(x, y) \land R(x, y))$

Solution:

We will give a counter-model \mathcal{M} . In \mathcal{M} , let $A = \{1, 2\}, P^{\mathcal{M}} = R^{\mathcal{M}} = \{(1, 1), (1, 2), (2, 2)\}.$ We have that $\mathcal{M} \models \forall x. \exists y. (P(x, y) \to R(x, y))$ and $\mathcal{M} \models \exists x. \forall y. (P(x, y) \to R(x, y))$ hold. However, $\mathcal{M} \not\models \forall x. \forall y. (P(x, y) \land R(x, y))$ since $(2, 1) \notin P^{\mathcal{M}} = R^{\mathcal{M}}.$

(e) (3pts) $\exists x.(P(x) \land Q(x)), \neg \exists x.(Q(x) \land R(x)) \vdash \exists x.(P(x) \land \neg R(x))$

Solution:

1.	$\exists x.(P(x) \land Q(x))$	premise
2.	$\neg \exists x. (Q(x) \land R(x))$	premise
3.	x_0	fresh
4.	$P(x_0) \wedge Q(x_0)$	assumption
5.	$P(x_0)$	$\wedge e_1 4$
6.	$Q(x_0)$	$\wedge e_2 4$
7.	$R(x_0)$	assumption
8.	$Q(x_0) \wedge R(x_0)$	$\wedge i$ (6,7)
9.	$\exists x.(Q(x) \land R(x))$	∃i 8
10.		$\neg e(2,9)$
11.	$\neg R(x_0)$	¬i 7–10
12.	$P(x_0) \land \neg R(x_0)$	∧i (5,11)
13.	$\exists x. (P(x) \land \neg R(x))$	∃i 12
14.	$\exists x. (P(x) \land \neg R(x))$	$\exists e (1, 3-13)$

- 4. Consider the following semantic entailments:
 - i) $\exists x. \forall y. x = y \models \forall x. \forall y. x = y$
 - ii) $\forall x.(P(x) \rightarrow \exists x.R(x)) \models \exists x.(P(x) \rightarrow R(x))$
 - iii) $\exists x.(P(x) \to R(x)), \exists x.(R(x) \to P(x)) \models \exists x.(P(x) \land R(x))$
 - (a) (1.5 pts) What is a model for the language of these entailments?
 - (b) (2.5+3.5+2.5 pts) Explain semantically (that is, reasoning with models) whether these entailments are valid or not.

Solution:

- (a) A model \mathcal{M} for the language consists of a domain $\mathcal{A} \neq \emptyset$ with an equality relation $=_{\mathcal{A}} \subseteq \mathcal{A} \times \mathcal{A}$, and two unary relations $R^{\mathcal{M}}, P^{\mathcal{M}} \subseteq \mathcal{A}$.
- (b) i) The semantic entailment is valid. Consider a model *M* with domain *A* such that *M* ⊨ ∃*x*.∀*y.x* = *y*. We need to show that *M* ⊨ ∀*x*.∀*y.x* = *y*. In this model, there is *a* ∈ *A* such that for all *b* ∈ *A*, *a* =_A *b*. That is, all elements in the set are equal to the element *a*. So any two elements in the set *A* are equal, hence *M* ⊨ ∀*x*.∀*y.x* = *y*.

ii) The semantic entailment is valid.

Consider a model \mathcal{M} with domain \mathcal{A} such that $\mathcal{M} \models \forall x.(P(x) \to \exists x.R(x))$. We need to show that $\mathcal{M} \models \exists x.(P(x) \to R(x))$. If there is an $a \in \mathcal{A}$ such that $a \notin P^{\mathcal{M}}$ then $\mathcal{M} \models_{[x \mapsto a]} P(x) \to R(x)$ (since $\mathcal{M} \not\models_{[x \mapsto a]} P(x)$) and hence $\mathcal{M} \models \exists x.(P(x) \to R(x))$. Otherwise, $P^{\mathcal{M}} = \mathcal{A} \neq \emptyset$ and $R^{\mathcal{M}} \subseteq P^{\mathcal{M}}$. Observe that in this case $R^{\mathcal{M}} \neq \emptyset$: since we have that $\mathcal{M} \models_{[x \mapsto a]} P(x) \to \exists x.R(x)$ for all $a \in \mathcal{A}$ and $\mathcal{M} \models_{[x \mapsto a]} P(x)$ for all $a \in \mathcal{A}$, so it should be that $\mathcal{M} \models \exists x.R(x)$. This means there is $b \in \mathcal{A}$ such that $\mathcal{M} \models_{[x \mapsto b]} R(x)$. Since $P^{\mathcal{M}} = \mathcal{A}$ then $\mathcal{M} \models_{[x \mapsto b]} P(x)$ and hence $\mathcal{M} \models \exists x.(P(x) \to R(x))$.

- iii) The semantic entailment is not valid. Consider a model \mathcal{M} with domain \mathcal{A} such $P^{\mathcal{M}} = R^{\mathcal{M}} = \emptyset$. Here both premises are valid simply because there is no element satisfying the condition of the implication. That is, there no $a \in \mathcal{A}$ such that $a \in P^{\mathcal{M}}$ and $a \in R^{\mathcal{M}}$. Hence the conclusion is not valid.
- 5. Consider a language with relation symbols A(x, y, z), M(x, y, z), a constant zero and a function symbol s(x).

Let T be the following theory

- $\forall x \ A(x, \mathsf{zero}, x)$
- $\forall x \forall y \forall z \ A(x, y, z) \rightarrow A(x, s(y), s(z))$

Let $s^2(x)$ denote s(s(x)), $s^3(x)$ denote s(s(s(x))) and so on.

- (a) (3 pts) Show that for all Natural numbers p, q, r, we have $A(s^p(\text{zero}), s^q(\text{zero}), s^r(\text{zero}))$ provable in T if, and only if, r is equal to the addition of p and q.
- (b) (3 pts) Is the theory T, A(s(zero), s(zero), zero) inconsistent?

Solution:

(a) If r = p+q then we can use the axioms of T to prove $A(s^p(\text{zero}), s^q(\text{zero}), s^r(\text{zero}))$ by induction on q.

Conversely, we have a model of T by taking for domain the set of natural numbers and s^M the successor function and zero^M to be 0 and A(x, y, z) to mean z = x + y. It follows by *soundness* that if $A(s^p(\text{zero}), s^q(\text{zero}), s^r(\text{zero}))$ is provable in T then r is equal to the addition of p and q.

(b) Another model is obtained by taking for domain the set $\{0\}$ and $zero^M = 0$ and $s^M(x) = 0$ and A(x, y, z) always true. This is a model of the theory T, A(s(zero), s(zero), zero) and hence, using *soundness* again, this theory is not inconsistent.

6. Are the following LTL formulae valid?

- (a) (2 pts) $G(p \to Xp) \to (Gp \lor G(\neg p))$
- (b) (3 pts) $(G(Fp) \land G(p \to Fq)) \to GFq$
- (c) (3 pts) $G(Fp \to p) \to (Gp \lor F(G \neg p))$
- (d) (2 pts) $G(b \to (b \ U \ (a \land \neg b))) \to (G(\neg b) \lor F(a \land \neg b))$

Solution:

- (a) The first formula is not valid. We take a path π with $L(\pi(0), p) = 0$ and $L(\pi(n), p) = 1$ for n > 0. We then have $\pi \models G(p \to Xp)$ and π does not validate Gp and π does not validate $G(\neg p)$.
- (b) The second formula is valid: if for a path π we have $L(\pi(k), p) = 1$ infinitely often and whenever p holds q holds later eventually, then q also holds infinitely often.
- (c) The third formula is valid. If we have for a path π that p holds whenever p holds later eventually and we have $\pi \models F(\neg p)$ then $\neg p$ holds eventually, and from this point on, we have $\neg p$ always, so $\pi \models FG(\neg p)$.
- (d) The last formula $G(b \to (b \ U \ (a \land \neg b))) \to (G(\neg b) \lor F(b \land a))$ also holds. If for a path π we have $\pi \models Fb$ and $\pi \models G(b \to (b \ U \ a \land \neg b))$ then we have $L(\pi(k), b) = 1$ for some k and $\pi^k \models b \to (b \ U \ a \land \neg b)$ and hence $\pi^k \models b \ U \ (a \land \neg b)$ and so we have eventually $a \land \neg b$ as desired.
- 7. Are the following CTL formulae valid?
 - (a) (3 pts) $AF(EGp) \rightarrow EGp$
 - (b) (3 pts) $(AG(AXp \rightarrow p) \land \neg p) \rightarrow EG(\neg p)$
 - (c) (2 pts) $EF(AGp) \rightarrow EGp$
 - (d) (2 pts) $AG(p \to E(p \ U \ q)) \to (AG(\neg p) \lor EFq)$

Solution:

- (a) The first formula is not valid: a counter model is given by $S_0 \to S_1$ and $S_1 \to S_1$ and p holds for S_1 . We then have $S_0 \models AF(EGp)$ by not $S_0 \models EGp$.
- (b) The second formula is valid. For any model, is we have $s \models \neg p$ and $s \models AXp \rightarrow p$ then we have $s \rightarrow s_1$ such that $s_1 \models \neg p$. We also have $s_1 \models AXp \rightarrow p$ since $s \models AG(AXp \rightarrow p)$ and so we can find $s_1 \rightarrow s_2$ such that $s_2 \models \neg p$ and so on. We build in this way a path $s \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ where we have $s_n \models \neg p$ for all n and so $s \models EG(\neg p)$.
- (c) The third formula $EF(AGp) \to EGp$ is not valid. A counter model is given by $S_0 \to S_1$ and $S_1 \to S_1$ and p only valid at S_1 .
- (d) The last formula $AG(p \to E(p \ U \ q)) \to (AG(\neg p) \lor EFq)$ is valid. If we have $s \models AG(p \to E(p \ U \ q))$ and $s \models \neg AG(\neg p) = EFp$ then we have a finite path from s to a state s' satisfying p. We then have $s' \models p \to E(p \ U \ q)$ and so $s' \models E(p \ U \ q)$ and we have a finite path from s' to a state satisfying q. So we have $s \models EFq$ as desired.
- 8. Consider a language with constant **zero** and function symbol s(x) and the following theory

$$\forall x \; (\mathsf{zero} \neq s(x)) \qquad \forall x \forall y \; (s(x) = s(y) \rightarrow x = y)$$

Let $s^{2}(x)$ denote s(s(x)), $s^{3}(x)$ denote s(s(s(x))) and so on.

- (a) (3 pts) Show that for any Natural numbers p and q we have that if $p \neq q$ then $T \vdash s^p(\text{zero}) \neq s^q(\text{zero})$
- (b) (2 pts) Can T have a finite model?

Solution:

(a) Clearly we have by the first axiom $T \vdash \mathsf{zero} \neq s^q(\mathsf{zero})$ if $q \neq 0$. Also, $T \vdash s^p(\mathsf{zero}) \neq \mathsf{zero}$ if $p \neq 0$ by the first axiom and symmetry of equality. Finally by the second axiom we have

$$T \vdash s^{p+1}(\mathsf{zero}) = s^{q+1}(\mathsf{zero}) \to s^p(\mathsf{zero}) = s^q(\mathsf{zero})$$

and so we have by induction $T \vdash s^{p+1}(\mathsf{zero}) \neq s^{q+1}(\mathsf{zero})$ if $p \neq q$.

(b) It follows that, in any model of T, the interpretations of zero, s(zero), $s^2(zero)$,... are all distinct and so T does not have any finite model.