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All answers must be carefully motivated.

1. Give proofs in natural deduction of the following sequents:
(a) (3p) p→ q, r → s, p→ r ⊢ p→ r ∧ s

Solution:
1. p→ q premise
2. r → s premise
3. p→ r premise
4. p assumption
5. r →e(3,4)
6. s →e(2,5)
7. r ∧ s ∧i(5,6)
8. p→ r ∧ s →i(4–7)

(b) (3p) p ∨ q, p→ ¬s ⊢ s→ q

Solution:
1. p ∨ q premise
2. p→ ¬s premise
3. s assumption
4. p assumption
5. ¬s →e(2,4)
6. ⊥ →e(5,3)
7. q ⊥e(6,q)
8. q assumption
9. q ∨e(1,4–7,8–8)

10. s→ q →i(3–9)
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(c) (3p) p→ q ∨ r, p ∧ q → r ⊢ p→ r

Solution:
1. p→ q ∨ r premise
2. p ∧ q → r premise
3. p assumption
4. q ∨ r →e(1,3)
5. q assumption
6. p ∧ q ∧i(3,5)
7. r →e(2,6)
8. r assumption
9. r ∨e(4,5–7,8–8)

10. p→ r →i(3–9)

2. Decide for each of the sequents below whether they are valid or not, i.e., give a proof
in natural deduction or a counter-model.
(a) (3p) q ∨ p, q → ¬r ⊢ q ∨ (p ∧ ¬r)

Solution: We give a model for

q ∨ p,¬q ∨ ¬r,¬q,¬p ∨ r

Define M as follows

AM = {0}
qM = F

pM = T

rM = T

(b) (3p) ∀x∀y∀z (E(x, z) ∧ E(y, z) → E(x, y)) ⊢ ∀x∀y (E(x, y) → E(y, x))

Solution: Consider the model M given by

AM = {0, 1}
EM = {(0, 0), (0, 1)}

Then (a, b) ∈ EM iff a = 0. Moreover, if a = 0 and b = 0, then a = b.
Hence:

M |= ∀x∀y∀z (E(x, z) ∧ E(y, z) → E(x, y))

We have (0, 1) ∈ EM but (1, 0) /∈ EM, hence EM is not symmetric, that is,

M ̸|= ∀x∀y (E(x, y) → E(y, x)).
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(c) (3p) ∀x∀y (R(x, y) → ¬R(y, x)) ⊢ ∀z ¬R(z, z)

Solution:
1. ∀x∀y (R(x, y) → ¬R(y, x)) premise
2. z0

3. R(z0, z0) assume
4. ∀y (R(z0, y) → ¬R(y, z0)) ∀e(1,z0)
5. R(z0, z0) → ¬R(z0, z0) ∀e(4,z0)
6. ¬R(z0, z0) →e(5,3)
7. ⊥ →e(6,3)
8. ¬R(z0, z0) →i(3–7)
9. ∀z ¬R(z, z) ∀i(2–8,z0)

(d) (3p) ∀x∀y (x = y ∨ x = f(x)) ⊢ ∀xx = f(x)

Solution: We give a natural deduction proof of the sequent.
1. ∀x∀y (x = y ∨ x = f(x)) premise
2. a

3. ∀y (a = y ∨ a = f(a)) ∀e(1,a)
4. a = f(a) ∨ a = f(a) ∀e(3,f(a))
5. a = f(a) assume
6. a = f(a) assume
7. a = f(a) ∨e(4,5–5,6–6)
8. ∀xx = f(x) ∀i(2–7,a)
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3. Give a proof in natural deduction of the following sequents:
(a) (3p) ∀x (P (x) → ∃y R(x, y)),∀x∀y (R(x, y) → Q(x)) ⊢ ∀x (P (x) → Q(x))

Solution:
1. ∀x (P (x) → ∃y R(x, y)) premise
2. ∀x∀y (R(x, y) → Q(x)) premise
3. a

4. P (a) → ∃y R(a, y) ∀e(1,a)
5. ∀y (R(a, y) → Q(a)) ∀e(2,a)
6. P (a) assume
7. ∃y R(a, y) →e(4,6)
8. w R(a, w) assume
9. R(a, w) → Q(a) ∀e(5,w)

10. Q(a) →e(9,8)
11. Q(a) ∃e(7,8–10,w)
12. P (a) → Q(a) →i(6–11)
13. ∀x (P (x) → Q(x)) ∀i(3–12,a)

(b) (3p) ∀x (P (x) → ¬M(x)),∃y (M(y) ∧ S(y)) ⊢ ∃z (S(z) ∧ ¬P (z))

Solution:
1. ∀x (P (x) → ¬M(x)) premise
2. ∃y (M(y) ∧ S(y)) premise
3. w M(w) ∧ S(w) assume
4. M(w) ∧e1(3)
5. S(w) ∧e2(3)
6. P (w) → ¬M(w) ∀e(1,w)
7. P (w) assume
8. ¬M(w) →e(6,7)
9. ⊥ →e(8,4)

10. ¬P (w) →i(7–9)
11. S(w) ∧ ¬P (w) ∧i(5,10)
12. ∃z (S(z) ∧ ¬P (z)) ∃i(11,w)
13. ∃z (S(z) ∧ ¬P (z)) ∃e(2,3–12,w)

4. Consider the language with one unary predicate symbol P and one unary function
symbol f .
(a) (3p) Explain what is a model of this language.
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Solution: A model M of this language is given by a nonempty set AM, a
subset PM ⊆ AM and a function fM : AM → AM.

(b) (3p) Explain why the following entailment is valid:
∀x (¬P (x) → P (f(x))) |= ∃xP (x)

Solution: Let M be an arbitrary model with domain A that satisfies

∀x (¬P (x) → P (f(x))),

that is, for all a ∈ A we have

a /∈ PM implies fM(a) ∈ PM. (1)

Since A is non-empty, there exists a0 ∈ A. In case a0 ∈ PM we immediately
get M |= ∃xP (x). Otherwise, we have a0 /∈ PM, hence by (1) we get
fM(a0) ∈ PM, proving M |= ∃xP (x). So in either case M |= ∃xP (x).

5. (a) (3p) Explain what is a model of LTL/CTL.

Solution: An LTL/CTL model M consists of a set of states S, a binary
transition relation → ⊆ S×S without sinks (for all states s ∈ S there exists
a state t ∈ S such that s → t, that is s can transition to t) and a labelling
function L : S → P(Atom) mapping states s ∈ S to sets of atoms L(s).

(b) (3p) Give an example of a LTL/CTL model M where we have M |= AGEF p
in CTL but not M |= GF p in LTL.

Solution: Define M as follows:

SM = {s, t}
→M = {(s, s), (s, t), (t, t)}

LM(s) = ∅
LM(t) = {p}

s p t

We have that M, t |= EF p since M, t |= p; moreover M, s |= EF p since the
state t is reachable from s. Thus either state also satisfies AGEF p.
But π ̸|= GF p for π = s → s → s → . . . since π never visits the sate t and
p /∈ LM(s).
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6. (3p) Justify the following implication: if φ and ψ are LTL formulae and |= Gψ → φ
then |= Gψ → Gφ. Recall that |= δ means that the formula δ is valid on all paths
in all LTL models.

Solution: Assume π |= Gψ → φ (1) for all paths π in all models M. Let
σ |= Gψ (2) for some path σ in some model. We show σ |= Gφ. So let i be some
arbitrary index and we show σi |= φ. From (2) we have σj |= ψ for all indices j,
in particular σj |= ψ for all indices j ≥ i and hence σi |= Gψ. From this and (1)
we get the claim σi |= φ.

7. We consider a language with one function symbol f . We write f 2(x) for f(f(x)),
f 3(x) for f(f 2(x)) and so on. Decide which entailment is valid:
(a) (3p) ∀x f 2(x) = x |= ∀x f(x) = x

Solution: We give a model M for

∀x f 2(x) = x,∃x f(x) ̸= x

Define M as follows:

AM = {0, 1}
fM(0) = 1

fM(1) = 0

(b) (3p) ∀x f 3(x) = x,∀x f 5(x) = x |= ∀x f(x) = x

Solution: We give a natural deduction proof of the sequent.
1. ∀x f 3(x) = x premise
2. ∀x f 5(x) = x premise
3. a

4. f 3(a) = a ∀e(1,a)
5. f 5(a) = a ∀e(2,a)
6. f 2(a) = a =e(4,5,f 2(_) = a)
7. f(a) = a =e(6,4,f(_) = a)
8. ∀x f(x) = x ∀i(3–7,a)

By soundness, the entailment is valid.

8. (4p) Explain why the following entailment is valid:

∀x∃y R(x, y) |= ∀x1∀x2∃y1∃y2 (R(x1, y1) ∧R(x2, y2) ∧ (x1 = x2 → y1 = y2))
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Solution: We will show that any model M that satisfies the premise also satisfies
the conclusion.
To show that M satisfies the conclusion we have to show that: (∗) for all a1, a2 ∈
AM there are some b1, b2 ∈ AM such that (a1, b1) ∈ RM and (a2, b2) ∈ RM and if
a1 = a2 then b1 = b2.
So let a1, a2 ∈ AM be two arbitrary elements, from M |= ∀x∃y R(x, y) we know
there exists a b1 ∈ AM such that (a1, b1) ∈ RM. Now we have two cases:

• if a1 = a2 then we also have (a2, b1) ∈ RM, so we can choose b2 = b1 to
satisfy all the conditions in (∗);

• if a1 ̸= a2 then we use again that M |= ∀x∃y R(x, y) to obtain that there
is a b2 ∈ AM such that (a2, b2) ∈ RM, and since the implication at the
end of the formula has a false premise, this is again sufficient to satisfy the
conditions in (∗).

9. We consider a language with one relation symbol R. A model M is given by a
nonempty set AM and an interpretation RM ⊆ AM × AM. We recall that a strict
order relation is a model for the two formulae

ψ1 = ∀x¬R(x, x) ψ2 = ∀x∀y∀z (R(x, y) ∧R(y, z) → R(x, z))

We want to analyse the following condition on models:

W There is no infinite sequence a0, a1, . . . of elements of AM such that (an+1, an) ∈
RM for all n ∈ N.

(a) (2p) Give one example of a model satisfying this condition W and one example
of a model not satisfying this condition.

Solution: A model M satisfying W is given by AM = N and RM =
{(m,n) | m < n}, as any sequence will eventually reach 0 and will not
be able to continue further.
Instead a model M′ that does not satisfy W is given by AM′

= Z and
RM′

= {(i, j) | i < j} because in the integers we can keep finding smaller
and smaller elements.

(b) (3p) Explain why any model of ψ1, ψ2 where AM is finite has to satisfy this
condition.

Solution: Given a sequence a0, a1, . . . of elements related by RM as in W,
we want to show that there cannot be repetitions, because then by finiteness
of AM this sequence must be finite.
Because of M |= ψ2 we have (an+k+1, an) ∈ RM for all n, k ∈ N. This means
that every element of the sequence is related by RM to all those that come
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before. Because of M |= ψ1 we have that RM does not relate equal elements,
so in conclusion no element of AM appears twice in the sequence.

(c) (3p) Explain why there is no predicate logic formula ψ3 such that M is a model
of ψ1, ψ2 satisfying the condition W if and only if M is a model of ψ1, ψ2

satisfying ψ3. (Hint: Use the Compactness Theorem)

Solution: We show that if such a formula ψ3 exists we can reach a contra-
diction.
Let us define Ψ = {ψ1, ψ2, ψ3}. Also consider the set of formulas ∆ =
{R(cn+1, cn) | n ∈ N}, where each cn is a new constant for each n ∈ N.
We have that if M |= ∆ then M cannot satisfy W and hence Ψ, because
cM0 , cM1 , . . . is an infinite sequence of elements related by RM.
We derive a contradiction with the paragraph above by showing that there
is a model that satisfies Ψ ∪∆. We do so by the compactness theorem.
To satisfy the premise of the compactness theorem we have to show that
every finite subset Γ0 of Ψ∪∆ has a model. If Γ0 is finite then the set of all
mentioned constants C =

∪
{{cn+1, cn} | R(cn+1, cn) ∈ Γ0, n ∈ N} is finite.

We create a model M such that AM = C, cMn = cn and RM = {(cn+k+1, cn) |
cn+k+1, cn ∈ C, n, k ∈ N}. Then M |= Γ0 because it models the constants
cn and the relations on them by construction, it models ψ1 and ψ2 because
RM can be verified to be a total order on the constants, and it models ψ3

because AM is finite and by (b) any model with a finite universe satisfies W.

Good Luck!
Simon and Thierry
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